Search results for "Schwinger–Dyson equations"

showing 2 items of 2 documents

On the zero crossing of the three-gluon vertex

2016

We report on new results on the infrared behaviour of the three-gluon vertex in quenched Quantum Chormodynamics, obtained from large-volume lattice simulations. The main focus of our study is the appearance of the characteristic infrared feature known as 'zero crossing', the origin of which is intimately connected with the nonperturbative masslessness of the Faddeev-Popov ghost. The appearance of this effect is clearly visible in one of the two kinematic configurations analyzed, and its theoretical origin is discussed in the framework of Schwinger-Dyson equations. The effective coupling in the momentum subtraction scheme that corresponds to the three-gluon vertex is constructed, revealing t…

High Energy Physics - TheoryNuclear and High Energy PhysicsLattice simulationsInfraredHigh Energy Physics::LatticeFOS: Physical sciencesThree-gluon vertexKinematicsnonperturbative01 natural sciencesSchwinger–Dyson equations[ PHYS.HTHE ] Physics [physics]/High Energy Physics - Theory [hep-th]High Energy Physics - Phenomenology (hep-ph)High Energy Physics - LatticeQuantum mechanicsLattice (order)0103 physical sciencesddc:530Exact locationquantum chromodynamics: quenching010306 general physicsMathematical physicslatticeQuantum chromodynamicsPhysicsZero crossing010308 nuclear & particles physics[PHYS.HLAT]Physics [physics]/High Energy Physics - Lattice [hep-lat][PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]High Energy Physics::PhenomenologyHigh Energy Physics - Lattice (hep-lat)[ PHYS.HLAT ] Physics [physics]/High Energy Physics - Lattice [hep-lat]gluon: vertexcrossingZero crossingghostlcsh:QC1-999GluonDyson-Schwinger equationHigh Energy Physics - PhenomenologyHigh Energy Physics - Theory (hep-th)[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]infrared[ PHYS.HPHE ] Physics [physics]/High Energy Physics - Phenomenology [hep-ph]lcsh:Physics
researchProduct

Pinch Technique: Theory and Applications

2009

We review the theoretical foundations and the most important physical applications of the Pinch Technique (PT). This general method allows the construction of off-shell Green’s functions in non-Abelian gauge theories that are independent of the gauge-fixing parameter and satisfy ghost-free Ward identities. We first present the diagrammatic formulation of the technique in QCD, deriving, at one loop, the gauge independent gluon self-energy, quark–gluon vertex, and three-gluon vertex, together with their Abelian Ward identities. The generalization of the PT to theories with spontaneous symmetry breaking is carried out in detail, and the profound connection with the optical theorem and the disp…

High Energy Physics - TheoryParticle physicsSpontaneous symmetry breakingGluonsHigh Energy Physics::LatticeFOS: Physical sciencesGeneral Physics and AstronomyDynamical mass generationGauge-invarianceSchwinger–Dyson equationsRenormalizationTheoretical physicsQuantization (physics)symbols.namesakeHigh Energy Physics::TheoryHigh Energy Physics - Phenomenology (hep-ph)Non-Abelian gauge theoriesFeynman diagramGauge theoryGauge bosonsQuantum chromodynamicsPhysicsBackground field methodGreens functionsElectroweak interactionHigh Energy Physics::PhenomenologyFísicaHigh Energy Physics - PhenomenologyHigh Energy Physics - Theory (hep-th)symbols
researchProduct